Summary of Properties of
Trigonometric Functions:
cot x = 1/tan x OR tan x cot x = 1
sec x = 1/cos x OR cos x sec x = 1
csc x = 1/sin x OR sin x csc x = 1
Tan x = sin x/cos x = sec x/ csc x
Cot x = cos x/sin x = csc x / sec x
Cos2x + sin2x = 1
1 + tan2x = sec 2x
cot2x + 1 = csc2x
Sin(-x) = -sin x (odd)
Cos (-x) = cos x (even)
Tan (-x) = -tan x (odd)
Cot (-x) = -cot x (odd)
Sec (-x) = sec x (even)
Csc (-x) = -csc x (odd)
Cos (90 - ¶) = sin ¶; cos(P/2 - ¶) = sin x
Cot(90-¶) = tan ¶; cot (P/2 – x) = tan x
Csc(90=¶) = sec ¶; csc (P/2 –x) = sec x
Cos (a-b) = cos a cos b +sin a sin b
Cos (a+b) = cos a cos b – sin a sin b
Sin (a-b) = sin a cos b – cos a sin b
Sin (a+b) = sin a cos b + cos a cos b
Tan (a-b) = (tan a – tan b) / (1 + tan a tan b)
Tan (a=b) = (tan a + tan b) / (1 – tan a tan b)
Sin 2x = 2sin x cos x
Cos 2x = cos2x –sin2x = 1 – 2 sin2x = 2 cos2x –1
Tan 2x = (2tan x) / (1-tan2x)
Cos2x = ½(1+cos2x)
Sin2x = ½(1-cos2x)
Sin ½x = ±Ö(1/2(1 – cos x))
Cos ½x = ± Ö(1/2(1+cos x)0
Tan ½x = ± Ö(1/2(1-cos x) / (1 + cos x)
2 cos a cos b = cos (a+b) + cos (a-b)
2 sin a sin b = -cos (a+b) + cos (a-b)
2 sin a cos b = sin (a +b) + cos (a-b)
2 cos A sin B = sin (a+b) – sin (a-b)
A cos x + B sin x = C cos (x – D); where
C = Ö(A2 + B2), cos D = A/C, and sin D = B/C